2022-10-04 • Use faster curve fit for connection inference
Contents
2022-10-04 • Use faster curve fit for connection inference¶
As we saw in the previous notebook, we can get away with way fewer Levenberg-Marquardt steps (see here for more on that algo) to get a decent fit: the difference in fit quality between 10 and the default ~350 iterations is not that big.
Imports¶
#
using MyToolbox
@time_imports using VoltoMapSim
[ Info: Precompiling VoltoMapSim [f713100b-c48c-421a-b480-5fcb4c589a9e]
[ Info: Skipping precompilation since __precompile__(false). Importing VoltoMapSim [f713100b-c48c-421a-b480-5fcb4c589a9e].
[ Info: Precompiling Sciplotlib [61be95e5-9550-4d5f-a203-92a5acbc3116]
[ Info: Running Sciplotlib._precompile_
1072.4 ms Unitful
1752.6 ms Sciplotlib 51.23% compilation time
[ Info: Precompiling LsqFit [2fda8390-95c7-5789-9bda-21331edee243]
25.5 ms FiniteDiff 34.90% compilation time
14.9 ms NLSolversBase
6.2 ms LsqFit
The faster modelling code has been consolidated in the codebase (src/infer/model_STA.jl
).
Params¶
p = get_params(
duration = 10minutes,
p_conn = 0.04,
g_EE = 1, g_EI = 1, g_IE = 4, g_II = 4,
ext_current = Normal(-0.5 * pA/√seconds, 5 * pA/√seconds),
E_inh = -80 * mV,
record_v = [1:40; 801:810],
);
Load STA’s¶
Load all STA’s¶
Skip this section if you want just one.
out = cached_STAs(p);
Loading cached output from `C:\Users\tfiers\.phdcache\calc_all_STAs\b9353bdd11d8b8cb.jld2` … done (16.9 s)
(ct, STAs, shuffled_STAs) = out;
α = 0.05
conns = ct.pre .=> ct.post
example_conn(typ) = conns[findfirst(ct.conntype .== typ)]
conn = example_conn(:exc) # 139 => 1
139 => 1
STA = copy(STAs[conn]);
Load 1 STA¶
path = cachepath("2022-10-04__inspect_curve_fit", "STA");
# savecache(path, STA);
# using SnoopCompile
# tinf = @snoopi_deep loadcache(path);
@time STA = loadcache(path);
Test one¶
fit, model = STA_modelling_funcs(p);
@time fit(STA, maxIter=10); # compile
27.393178 seconds (23.28 M allocations: 1.119 GiB, 14.36% gc time, 99.67% compilation time: 0% of which was recompilation)
fitfunc = fit $ (; maxIter = 10)
testfunc = modelfit_test $ (; modelling_funcs = (fitfunc, model))
test_conn(testfunc, STAs[conn], shuffled_STAs[conn])
(predtype = :exc, pval = 0.01, pval_type = "<", Eness = 0.379)
@time test_conn(testfunc, STAs[conn], shuffled_STAs[conn]);
0.394131 seconds (10.52 k allocations: 19.963 MiB, 11.45% gc time)
This used to be 5.8 seconds (or even 50 seconds).
Test sample¶
samplesize = 100
resetrng!(1234)
i = sample(1:nrow(ct), samplesize, replace = false)
ctsample = ct[i, :];
summarize_conns_to_test(ctsample)
We test 100 putative input connections to 45 neurons.
32 of those connections are excitatory, 15 are inhibitory, and the remaining 53 are non-connections.
tc = test_conns(testfunc, ctsample, STAs, shuffled_STAs, α = 0.05);
Testing connections: 100%|██████████████████████████████| Time: 0:00:40
perftable(tc)
Tested connections: 100 | ||||||
---|---|---|---|---|---|---|
┌─────── | Real type | ───────┐ | Precision | |||
unconn | exc | inh | ||||
┌ | unconn | 44 | 12 | 2 | 76% | |
Predicted type | exc | 3 | 20 | 0 | 87% | |
└ | inh | 6 | 0 | 13 | 68% | |
Sensitivity | 83% | 62% | 87% |
tc[(tc.conntype .== :exc), :]
32×8 DataFrame
7 rows omitted
Row | posttype | post | pre | conntype | predtype | pval | pval_type | Eness |
---|---|---|---|---|---|---|---|---|
Symbol | Int64 | Int64 | Symbol | Symbol | Float64 | String | Float64 | |
1 | exc | 17 | 207 | exc | exc | 0.01 | < | 2 |
2 | exc | 35 | 171 | exc | exc | 0.01 | < | 2 |
3 | exc | 29 | 682 | exc | unconn | 0.11 | = | 0.075 |
4 | exc | 7 | 161 | exc | exc | 0.01 | < | 0.885 |
5 | exc | 39 | 178 | exc | exc | 0.02 | = | 0.284 |
6 | exc | 19 | 515 | exc | exc | 0.02 | = | 0.108 |
7 | exc | 36 | 648 | exc | unconn | 0.59 | = | 0.0565 |
8 | inh | 803 | 757 | exc | exc | 0.01 | < | 0.705 |
9 | exc | 39 | 352 | exc | unconn | 0.19 | = | 0.0613 |
10 | exc | 14 | 781 | exc | unconn | 0.33 | = | 0.263 |
11 | exc | 28 | 20 | exc | unconn | 0.95 | = | 0.0152 |
12 | inh | 810 | 98 | exc | unconn | 0.59 | = | 0.164 |
13 | exc | 36 | 760 | exc | exc | 0.01 | < | 1.1 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
21 | exc | 29 | 760 | exc | unconn | 0.28 | = | 0.32 |
22 | exc | 17 | 4 | exc | unconn | 0.33 | = | 0.0108 |
23 | exc | 1 | 447 | exc | exc | 0.01 | < | 1.59 |
24 | exc | 26 | 516 | exc | exc | 0.01 | < | 2 |
25 | inh | 806 | 33 | exc | exc | 0.01 | < | 0.719 |
26 | exc | 19 | 282 | exc | unconn | 0.69 | = | 0.242 |
27 | inh | 805 | 502 | exc | exc | 0.01 | < | 0.644 |
28 | exc | 25 | 237 | exc | exc | 0.04 | = | 0.148 |
29 | exc | 2 | 779 | exc | exc | 0.01 | < | 0.831 |
30 | exc | 18 | 770 | exc | unconn | 0.62 | = | -0.127 |
31 | inh | 801 | 206 | exc | exc | 0.01 | < | 2 |
32 | exc | 6 | 451 | exc | exc | 0.01 | < | 0.737 |
(julia.exe:20956): Gdk-CRITICAL **: 23:49:46.013: gdk_seat_default_remove_tool: assertion 'tool != NULL' failed
(julia.exe:20956): Gdk-CRITICAL **: 23:49:46.942: gdk_seat_default_remove_tool: assertion 'tool != NULL' failed
(julia.exe:20956): Gdk-CRITICAL **: 23:49:46.991: gdk_seat_default_remove_tool: assertion 'tool != NULL' failed
(julia.exe:20956): Gdk-CRITICAL **: 11:26:25.302: gdk_seat_default_remove_tool: assertion 'tool != NULL' failed
(julia.exe:20956): Gdk-CRITICAL **: 11:26:26.472: gdk_seat_default_remove_tool: assertion 'tool != NULL' failed
(julia.exe:20956): Gdk-CRITICAL **: 11:26:26.626: gdk_seat_default_remove_tool: assertion 'tool != NULL' failed
plotsig(STAs[20=>28] / mV, p);
plotsig(STAs[451=>6] / mV, p);
plotsig(STAs[770=>18] / mV, p);
plotsig(STAs[33=>806] / mV, p);
oh ow, is this the nonlinearity of Izhikevich at play? (Weaker excitation at lower voltages). Hm or is that sth else (nb).