2022-07-15 • Network + VI Noise
Contents
2022-07-15 • Network + VI Noise¶
Imports¶
#
using Revise
using MyToolbox
using VoltoMapSim
[ Info: Precompiling VoltoMapSim [f713100b-c48c-421a-b480-5fcb4c589a9e]
Params¶
Based on Roxin; same as previous nb’s.
d = 6
p = get_params(
duration = 10minutes,
p_conn = 0.04,
g_EE = 1 / d,
g_EI = 18 / d,
g_IE = 36 / d,
g_II = 31 / d,
ext_current = Normal(-0.5 * pA/√seconds, 5 * pA/√seconds),
E_inh = -80 * mV,
to_record = [1, 801],
);
dumps(p)
ExperimentParams
sim: NetworkSimParams
general: GeneralSimParams
duration: 600
Δt: 0.0001
izh_neuron: IzhikevichParams
C: 1E-10
k: 7E-07
v_rest: -0.06
v_thr: -0.04
a: 30
b: -2E-09
v_peak: 0.035
v_reset: -0.05
Δu: 1E-10
v_t0: -0.06
u_t0: 0
synapses: SynapseParams
E_exc: 0
E_inh: -0.08
g_t0: 0
τ: 0.007
network: NetworkParams
N: 1000
EI_ratio: 4
p_conn: 0.04
syn_strengths: LogNormal
μ: -18.2
σ: 1
g_EE: 0.167
g_EI: 3
g_IE: 6
g_II: 5.17
rngseed: 22022022
tx_delay: 0.01
to_record: [1, 801]
ext_current: Normal
μ: -5E-13
σ: 5E-12
rngseed: 22022022
imaging: VoltageImagingParams
spike_SNR: 10
rngseed: 22022022
conntest: ConnTestParams
STA_window_length: 0.1
num_shuffles: 100
STA_test_statistic: ptp
rngseed: 22022022
evaluation: EvaluationParams
α: 0.05
N_tested_postsyn: 1
N_tested_presyn: 40
rngseed: 22022022
Add VI noise; eval conntest perf¶
SNRs = [Inf, 10, 4, 2, 1];
function get_detection_rates(m; verbose = true)
detrates = []
for SNR in SNRs
q = (@set p.imaging.spike_SNR = SNR)
vi = add_VI_noise(s.signals[m].v, q)
ii = get_input_info(m, s, q)
verbose && @show SNR
perf = cached(evaluate_conntest_perf, [vi, ii.spiketrains, q], key = [q, m])
verbose && println(perf.detection_rates, "\n")
push!(detrates, perf.detection_rates)
end
return detrates
end;
Plot¶
import PyPlot
using VoltoMapSim.Plot
function plotdetrates(m, title)
rates = get_detection_rates(m, verbose = false)
plot_detection_rates(rates, p; title,
xticklabels = [@sprintf "%.3G" x for x in SNRs],
xlabel = "Imaging noise (spike-SNR)",
)
end;
fig, ax = plotdetrates(1, "Excitatory neuron");
plotdetrates(801, "Inhibitory neuron");