2021-11-11 • Vary both inhibitory strength and proportion

2021-11-11 • Vary both inhibitory strength and proportion

Prelude

from voltage_to_wiring_sim.notebook_init import *
Preloading: numpy, numba, matplotlib.pyplot, seaborn.
Importing from submodules … ✔
Imported `np`, `mpl`, `plt`, `sns`, `pd`
Imported codebase (`voltage_to_wiring_sim`) as `v`
Imported `*` from `v.support.units`
Setup autoreload
v.print_reproducibility_info()

This cell was last run by lpxtf3 on DUIP74576 on Thu 18 Nov 2021, at 17:18 (UTC+0000).
Last git commit (Thu 18 Nov 2021, 17:05). Uncommited changes to 2 files.

Calculate

from voltage_to_wiring_sim.experiments.N_to_1_IE import Params, simulate_and_test_connections, eval_performance
base_params = Params()
v.pprint(base_params)
Params
------
     sim_duration = 600
         timestep = 0.0001
            τ_syn = 0.007
    neuron_params = {'C': 1e-10, 'a': 30.0, 'b': -2e-09, 'c': -0.05, ...}
imaging_spike_SNR = 20
  window_duration = 0.1
 num_spike_trains = 30
     p_inhibitory = 0.2
      p_connected = 0.7
       spike_rate = 20
       Δg_syn_exc = 4E-10
       Δg_syn_inh = 1.6E-09
        v_syn_exc = 0
        v_syn_inh = -0.065
         rng_seed = 0
@v.cache_to_disk(directory="2021-11-11__vary_both")
def sim_test_eval(params: Params):
    
    sim_data, _, test_summaries = simulate_and_test_connections(params)
    evalu_p_0_05, _, AUC, AUC_exc, AUC_inh = eval_performance(sim_data, test_summaries)
    
    output_spike_rate = sim_data.izh_output.spike_times.size / params.sim_duration
    
    return (output_spike_rate,
            evalu_p_0_05.TPR_exc, evalu_p_0_05.TPR_inh, evalu_p_0_05.FPR,
            AUC, AUC_exc, AUC_inh)
from dataclasses import replace
from itertools import product
dgsyn_IE_ratios = np.array([8, 4, 3, 2, 1, 0.5])

def get_dgsyn_vals(ratio, dgsyn_exc = 0.4 * nS):
    return dict(Δg_syn_exc=dgsyn_exc,
                Δg_syn_inh=dgsyn_exc * ratio)
from voltage_to_wiring_sim.experiments.N_to_1_IE import round_stochastically, fix_rng_seed
def get_N_vals(N_IE_ratio, seed, num_exc=24):
    fix_rng_seed(seed)
    num_inh = round_stochastically(N_IE_ratio * num_exc)
    N = num_exc + num_inh
    return dict(num_spike_trains=N,
                p_inhibitory=num_inh/N)
N_IE_ratios = 1 / dgsyn_IE_ratios
array([0.125, 0.25, 0.3333, 0.5, 1, 2])
seeds = [0];
seeds = [0, 1, 2];
seeds = [0, 1, 2, 3, 4, 5];
# seeds = np.arange(20);
f = sim_test_eval
args = [replace(base_params,
                **get_dgsyn_vals(dgsyn_IE_ratio),
                **get_N_vals(N_IE_ratio),
                rng_seed=seed,
        )
        for (dgsyn_IE_ratio, N_IE_ratio, seed) in product(dgsyn_IE_ratios, N_IE_ratios, seeds)];
%%time
results = v.run_in_parallel(f, args);
Wall time: 13min 38s

(eg: 6 minutes for 4x5 params and 3 seeds, using 8 cores)
Or: 19min 30s for 6x6 params and 3 seeds (but diagonal was already calculated).

M = np.reshape(results, (len(dgsyn_IE_ratios), len(N_IE_ratios), len(seeds), -1))

(output_spike_rate, 
 TPR_exc, TPR_inh, FPR,
 AUC, AUC_exc, AUC_inh) = (M[:,:,:,i] for i in range(M.shape[-1]))

Plot

def matplot(data, title: str, ax, cmap="plasma", vmin=None, vmax=None):
    
    data = np.fliplr(data.T)
    
    im = ax.imshow(data, origin="upper", cmap=cmap, vmin=vmin, vmax=vmax)

    ax.set_xticks(range(len(dgsyn_IE_ratios)))
    ax.set_xticklabels(f"{d:g}" for d in reversed(dgsyn_IE_ratios))
    ax.set_xlabel("Inhibitory connection" "\n" "strength $\; Δg_{inh} \; / \; Δg_{exc}$")

    ax.set_yticks(range(len(N_IE_ratios)))
    ax.set_yticklabels(f"{p:.2g}" for p in N_IE_ratios)
    ax.set_ylabel("Inhibitory inputs $\; N_{inh} \; / \; N_{exc}$")

    ax.grid(False)
    
    ax.set_title(title, pad=10, size="medium")
    
    for row, col in list(product(*(range(d) for d in data.shape))):
        val = data[row, col]
        text = f"{val:.2g}"
        size = "small" if len(text) <= 5 else "x-small"
        color = "0.3" if im.norm(val) > 0.5 else "0.7"
        t = ax.text(col, row, text, ha="center", va="center", color=color, size=size)
matplot_AUC = partial(matplot, vmin=0.5, vmax=1, cmap="cividis")

fig, axes = plt.subplots(ncols=3, **v.figsize(width=1000, aspect=1.8))

matplot(np.mean(output_spike_rate, axis=-1), "Output spike rate (Hz)", axes[0], cmap="plasma")
matplot_AUC(np.mean(AUC_exc, axis=-1), "Detection ability for" "\n" "excitatory connections (AUC)", axes[1])
matplot_AUC(np.mean(AUC_inh, axis=-1), "Detection ability for" "\n" "inhibitory connections (AUC)", axes[2])
axes[1].set_ylabel(None)
axes[2].set_ylabel(None);
../_images/2021-11-11__vary_both_inh_strength_and_proportion_20_0.png
fig, axes = plt.subplots(ncols=3, **v.figsize(width=1000, aspect=1.8))

def cov(data):
    return np.std(data, axis=-1) / np.mean(data, axis=-1)

matplot(cov(output_spike_rate), "", axes[0], vmin=0, vmax=0.3, cmap='viridis')
matplot(cov(AUC_exc), "", axes[1], vmin=0, vmax=0.3, cmap='viridis')
matplot(cov(AUC_inh), "", axes[2], vmin=0, vmax=0.3, cmap='viridis')
axes[1].set_ylabel(None)
axes[2].set_ylabel(None)
fig.suptitle("Coefficients of variation", y=0.8);
C:\Users\lpxtf3\AppData\Local\Temp/ipykernel_120568/1577590883.py:4: RuntimeWarning: invalid value encountered in true_divide
  return np.std(data, axis=-1) / np.mean(data, axis=-1)
../_images/2021-11-11__vary_both_inh_strength_and_proportion_21_1.png
fig, axes = plt.subplots(ncols=3, **v.figsize(width=1000, aspect=1.8))

spike_range = dict(vmin=output_spike_rate.min(), vmax=output_spike_rate.max())
matplot(np.min(output_spike_rate, axis=-1), "", axes[0], cmap="plasma", **spike_range)
matplot_AUC(np.min(AUC_exc, axis=-1), "", axes[1])
matplot_AUC(np.min(AUC_inh, axis=-1), "", axes[2])
axes[1].set_ylabel(None)
axes[2].set_ylabel(None)
fig.suptitle("Minimum values", y=0.77)

fig, axes = plt.subplots(ncols=3, **v.figsize(width=1000, aspect=1.8))

matplot(np.max(output_spike_rate, axis=-1), "", axes[0], cmap="plasma", **spike_range)
matplot_AUC(np.max(AUC_exc, axis=-1), "", axes[1])
matplot_AUC(np.max(AUC_inh, axis=-1), "", axes[2])
axes[1].set_ylabel(None)
axes[2].set_ylabel(None)
fig.suptitle("Maximum values", y=0.77);
../_images/2021-11-11__vary_both_inh_strength_and_proportion_22_0.png ../_images/2021-11-11__vary_both_inh_strength_and_proportion_22_1.png

Diagonal only

dgsyn_IE_ratios_diag = np.array([8, 6, 4, 3, 2, 1, 0.5]);
seeds_diag = [0];
seeds_diag = [0, 1, 2, 3, 4, 5];
seeds_diag = np.arange(20);
args_diag = [replace(base_params,
                     **get_dgsyn_vals(dgsyn_IE_ratio),
                     **get_N_vals(1 / dgsyn_IE_ratio, seed),
                     rng_seed=seed,
                    )
        for (dgsyn_IE_ratio, seed) in product(dgsyn_IE_ratios_diag, seeds_diag)];
%%time
results_diag = v.run_in_parallel(f, args_diag);
Wall time: 221 ms
M_diag = np.reshape(results_diag, (len(dgsyn_IE_ratios_diag), len(seeds_diag), -1))

(output_spike_rate, 
 TPR_exc, TPR_inh, FPR,
 AUC, AUC_exc, AUC_inh) = (M_diag[:,:,i] for i in range(M_diag.shape[-1]))
def plot_dots_and_mean(data, ax, x, c="0.2", label=None, ms=6, lw=5):
    ax.plot(x, data, "o", alpha=0.3, c=c, ms=ms)
    ax.plot(x, np.mean(data, axis=-1), "-", c=c, label=label, lw=lw)
    
smaller = dict(ms=4, lw=3);
def make_inv_ratio_ax():
    fig, ax = plt.subplots()

    ax.set_xscale('log')
    ax.set_xticks(dgsyn_IE_ratios_diag)
    ax.set_xticklabels(f"{r:g}" for r in dgsyn_IE_ratios_diag)

    ax.set_xlabel("Inhibitory connection strength $\; Δg_{inh} \; / \; Δg_{exc}$")

    # https://matplotlib.org/stable/gallery/subplots_axes_and_figures/secondary_axis.html
    def one_over(x):
        x = np.array(x).astype(float)
        near_zero = np.isclose(x, 0)
        x[near_zero] = np.inf
        x[~near_zero] = 1 / x[~near_zero]
        return x

    sax = ax.secondary_xaxis("top", functions=(one_over, one_over))

    N_IE_ratios_diag = 1 / dgsyn_IE_ratios_diag
    sax.set_xticks(N_IE_ratios_diag)
    sax.set_xticks([], minor=True)
    sax.set_xticklabels(f"{r:.3g}" for r in N_IE_ratios_diag)
    sax.set_xlabel("Number of inhibitory inputs $\; N_{inh} \; / \; N_{exc}$", labelpad=8)
    
    return fig, ax

plot = partial(plot_dots_and_mean, x=dgsyn_IE_ratios_diag);
fig, ax = make_inv_ratio_ax()
plot(output_spike_rate, ax)
ax.set_ylabel("Output spike rate (Hz)");
../_images/2021-11-11__vary_both_inh_strength_and_proportion_31_0.png
fig, ax = make_inv_ratio_ax()
plot(AUC_exc, ax, c=v.color_exc, label="Excitatory conn.")
plot(AUC_inh, ax, c=v.color_inh, label="Inhibitory conn.", **smaller)
ax.set_ylim(0.5, 1.02)
ax.set_ylabel("Area under ROC curve")
ax.legend();
../_images/2021-11-11__vary_both_inh_strength_and_proportion_32_0.png
fig, ax = make_inv_ratio_ax()
plot(TPR_exc, ax, c=v.color_exc, label="Excitatory conn.")
plot(TPR_inh, ax, c=v.color_inh, label="Inhibitory conn.", **smaller)
plot(FPR, ax, c=v.color_unconn, label="Non-connections")
ax.set_ylabel("Fraction detected as connection")
ax.legend();
../_images/2021-11-11__vary_both_inh_strength_and_proportion_33_0.png

Inspect signals

sim_and_test = v.cache_to_disk(simulate_and_test_connections);
dgsyn_ratio = 8

d_8, td_8, ts_8 = sim_and_test(replace(base_params, **get_dgsyn_vals(dgsyn_ratio), **get_N_vals(1 / dgsyn_ratio)));
dgsyn_ratio = 1

d_1, td_1, ts_1 = sim_and_test(replace(base_params, **get_dgsyn_vals(dgsyn_ratio), **get_N_vals(1 / dgsyn_ratio)));
def plot_slice(sig, ax, **kwargs):
    v.plot_signal(sig.slice(10*second, 1*second), ax, **kwargs)
fig, ax = plt.subplots()
plot_slice(d_8.izh_output.V_m / mV, ax, label="Few but strong inh. conn.")
plot_slice(d_1.izh_output.V_m / mV, ax, label="Many but weak inh. conn.")
ax.legend()
ax.set(xlabel="Time (s)", ylabel="Membrane potential (mV)");
../_images/2021-11-11__vary_both_inh_strength_and_proportion_39_0.png

Total conductance

from voltage_to_wiring_sim.experiments.N_to_1_IE import indices_where
d_8.num_exc_conn, d_8.num_inh_conn
(17, 2)
d_1.num_exc_conn, d_1.num_inh_conn
(17, 17)
g_inh_8 = sum(d_8.g_syns[i] for i in indices_where(d_8.is_inhibitory[d_8.is_connected]));
g_inh_1 = sum(d_1.g_syns[i] for i in indices_where(d_1.is_inhibitory[d_1.is_connected]));

fig, ax = plt.subplots()
plot_slice(g_inh_8 / nS, ax)
plot_slice(g_inh_1 / nS, ax)
ax.axhline(np.mean(g_inh_8) / nS, c="C0")
ax.axhline(np.mean(g_inh_1) / nS, c="C1")
ax.set(xlabel="Time (s)", ylabel="Inh. synaptic conductance (nS)");
../_images/2021-11-11__vary_both_inh_strength_and_proportion_44_0.png

(Medians differ, but means are the same).

g_exc_8 = sum(d_8.g_syns[i] for i in indices_where(d_8.is_excitatory[d_8.is_connected]));
g_exc_1 = sum(d_1.g_syns[i] for i in indices_where(d_1.is_excitatory[d_1.is_connected]));

fig, ax = plt.subplots()
plot_slice(g_exc_8 / nS, ax)
plot_slice(g_exc_1 / nS, ax)
ax.axhline(np.median(g_exc_8) / nS, c="C0")
ax.axhline(np.median(g_exc_1) / nS, c="C1");
../_images/2021-11-11__vary_both_inh_strength_and_proportion_46_0.png

Reproducibility

v.print_reproducibility_info(verbose=True)

This cell was last run by lpxtf3 on DUIP74576
on Thu 18 Nov 2021, at 16:55 (UTC+0000).

Last git commit (Fri 12 Nov 2021, 00:23).

Uncommited changes to:

 M ReadMe.md
 M codebase/voltage_to_wiring_sim/__init__.py
 M codebase/voltage_to_wiring_sim/experiments/N_to_1.py
 M codebase/voltage_to_wiring_sim/support/__init__.py
AM codebase/voltage_to_wiring_sim/support/high_performance.py
 M codebase/voltage_to_wiring_sim/support/misc.py
 M notebooks/2021-01-02__full_network_sim_tryout.ipynb
 M notebooks/2021-11-11__vary_both_inh_strength_and_proportion.ipynb
 M website/thesis/references.bib

Platform:

Windows-10
CPython 3.9.6 (C:\miniforge3\python.exe)
Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz

Dependencies of voltage_to_wiring_sim and their installed versions:

numpy                1.21.1
matplotlib           3.4.2
numba                0.53.1
joblib               1.0.1
seaborn              0.11.1
scipy                1.7.0
preload              2.2
nptyping             1.4.2

Full conda list:

# packages in environment at C:\miniforge3:
#
# Name                    Version                   Build  Channel
argon2-cffi               20.1.0           py39hb82d6ee_2    conda-forge
async_generator           1.10                       py_0    conda-forge
attrs                     21.2.0             pyhd8ed1ab_0    conda-forge
backcall                  0.2.0              pyh9f0ad1d_0    conda-forge
backports                 1.0                        py_2    conda-forge
backports.functools_lru_cache 1.6.4              pyhd8ed1ab_0    conda-forge
black                     21.9b0             pyhd8ed1ab_1    conda-forge
bleach                    3.3.1              pyhd8ed1ab_0    conda-forge
brotlipy                  0.7.0           py39hb82d6ee_1001    conda-forge
ca-certificates           2021.10.8            h5b45459_0    conda-forge
certifi                   2021.10.8        py39hcbf5309_1    conda-forge
cffi                      1.14.6           py39h0878f49_0    conda-forge
chardet                   4.0.0            py39hcbf5309_1    conda-forge
charset-normalizer        2.0.0              pyhd8ed1ab_0    conda-forge
click                     7.1.2                    pypi_0    pypi
colorama                  0.4.4              pyh9f0ad1d_0    conda-forge
colorful                  0.5.4                    pypi_0    pypi
conda                     4.10.3           py39hcbf5309_2    conda-forge
conda-package-handling    1.7.3            py39hb3671d1_0    conda-forge
cryptography              3.4.7            py39hd8d06c1_0    conda-forge
cycler                    0.10.0                   pypi_0    pypi
dataclasses               0.8                pyhc8e2a94_3    conda-forge
debugpy                   1.4.1            py39h415ef7b_0    conda-forge
decorator                 5.0.9              pyhd8ed1ab_0    conda-forge
defusedxml                0.7.1              pyhd8ed1ab_0    conda-forge
entrypoints               0.3             pyhd8ed1ab_1003    conda-forge
icu                       68.2                 h0e60522_0    conda-forge
idna                      3.1                pyhd3deb0d_0    conda-forge
importlib-metadata        4.6.1            py39hcbf5309_0    conda-forge
ipykernel                 6.0.3            py39h832f523_0    conda-forge
ipython                   7.25.0           py39h832f523_1    conda-forge
ipython_genutils          0.2.0                      py_1    conda-forge
jedi                      0.18.0           py39hcbf5309_2    conda-forge
jinja2                    3.0.1              pyhd8ed1ab_0    conda-forge
joblib                    1.0.1                    pypi_0    pypi
jpeg                      9d                   h8ffe710_0    conda-forge
jsonschema                3.2.0              pyhd8ed1ab_3    conda-forge
jupyter_client            6.1.12             pyhd8ed1ab_0    conda-forge
jupyter_contrib_core      0.3.3                      py_2    conda-forge
jupyter_contrib_nbextensions 0.5.1              pyhd8ed1ab_2    conda-forge
jupyter_core              4.7.1            py39hcbf5309_0    conda-forge
jupyter_highlight_selected_word 0.2.0           py39hcbf5309_1002    conda-forge
jupyter_latex_envs        1.4.6           pyhd8ed1ab_1002    conda-forge
jupyter_nbextensions_configurator 0.4.1            py39hcbf5309_2    conda-forge
jupyterlab_pygments       0.1.2              pyh9f0ad1d_0    conda-forge
kiwisolver                1.3.1                    pypi_0    pypi
libclang                  11.1.0          default_h5c34c98_1    conda-forge
libiconv                  1.16                 he774522_0    conda-forge
libpng                    1.6.37               h1d00b33_2    conda-forge
libsodium                 1.0.18               h8d14728_1    conda-forge
libxml2                   2.9.12               hf5bbc77_0    conda-forge
libxslt                   1.1.33               h65864e5_2    conda-forge
libzlib                   1.2.11            h8ffe710_1013    conda-forge
llvmlite                  0.36.0                   pypi_0    pypi
lxml                      4.6.3            py39h4fd7cdf_0    conda-forge
markupsafe                2.0.1            py39hb82d6ee_0    conda-forge
matplotlib                3.4.2                    pypi_0    pypi
matplotlib-inline         0.1.2              pyhd8ed1ab_2    conda-forge
menuinst                  1.4.17           py39hcbf5309_1    conda-forge
miniforge_console_shortcut 2.0                  h57928b3_0    conda-forge
mistune                   0.8.4           py39hb82d6ee_1004    conda-forge
mypy_extensions           0.4.3            py39hcbf5309_4    conda-forge
nbclient                  0.5.3              pyhd8ed1ab_0    conda-forge
nbconvert                 6.1.0            py39hcbf5309_0    conda-forge
nbformat                  5.1.3              pyhd8ed1ab_0    conda-forge
nest-asyncio              1.5.1              pyhd8ed1ab_0    conda-forge
notebook                  6.4.0              pyha770c72_0    conda-forge
nptyping                  1.4.2                    pypi_0    pypi
numba                     0.53.1                   pypi_0    pypi
numpy                     1.21.1                   pypi_0    pypi
openssl                   1.1.1l               h8ffe710_0    conda-forge
packaging                 21.0               pyhd8ed1ab_0    conda-forge
pandas                    1.3.1                    pypi_0    pypi
pandoc                    2.14.1               h8ffe710_0    conda-forge
pandocfilters             1.4.2                      py_1    conda-forge
parso                     0.8.2              pyhd8ed1ab_0    conda-forge
pathspec                  0.9.0              pyhd8ed1ab_0    conda-forge
pickleshare               0.7.5                   py_1003    conda-forge
pillow                    8.3.1                    pypi_0    pypi
pip                       21.2.1             pyhd8ed1ab_0    conda-forge
platformdirs              2.3.0              pyhd8ed1ab_0    conda-forge
preload                   2.2                      pypi_0    pypi
prettyprinter             0.18.0                   pypi_0    pypi
prometheus_client         0.11.0             pyhd8ed1ab_0    conda-forge
prompt-toolkit            3.0.19             pyha770c72_0    conda-forge
pycosat                   0.6.3           py39hb82d6ee_1006    conda-forge
pycparser                 2.20               pyh9f0ad1d_2    conda-forge
pygments                  2.9.0              pyhd8ed1ab_0    conda-forge
pympler                   0.9                      pypi_0    pypi
pyopenssl                 20.0.1             pyhd8ed1ab_0    conda-forge
pyparsing                 2.4.7              pyh9f0ad1d_0    conda-forge
pyqt                      5.12.3           py39hcbf5309_7    conda-forge
pyqt-impl                 5.12.3           py39h415ef7b_7    conda-forge
pyqt5-sip                 4.19.18          py39h415ef7b_7    conda-forge
pyqtchart                 5.12             py39h415ef7b_7    conda-forge
pyqtwebengine             5.12.1           py39h415ef7b_7    conda-forge
pyrsistent                0.17.3           py39hb82d6ee_2    conda-forge
pysocks                   1.7.1            py39hcbf5309_3    conda-forge
python                    3.9.6           h7840368_1_cpython    conda-forge
python-dateutil           2.8.2              pyhd8ed1ab_0    conda-forge
python_abi                3.9                      2_cp39    conda-forge
pytz                      2021.1                   pypi_0    pypi
pywin32                   300              py39hb82d6ee_0    conda-forge
pywinpty                  1.1.3            py39h99910a6_0    conda-forge
pyyaml                    6.0              py39hb82d6ee_0    conda-forge
pyzmq                     22.1.0           py39he46f08e_0    conda-forge
qt                        5.12.9               h5909a2a_4    conda-forge
regex                     2021.10.23       py39hb82d6ee_1    conda-forge
requests                  2.26.0             pyhd8ed1ab_0    conda-forge
ruamel_yaml               0.15.80         py39hb82d6ee_1004    conda-forge
scipy                     1.7.0                    pypi_0    pypi
seaborn                   0.11.1                   pypi_0    pypi
send2trash                1.7.1              pyhd8ed1ab_0    conda-forge
setuptools                49.6.0           py39hcbf5309_3    conda-forge
six                       1.16.0             pyh6c4a22f_0    conda-forge
sqlite                    3.36.0               h8ffe710_0    conda-forge
terminado                 0.10.1           py39hcbf5309_0    conda-forge
testpath                  0.5.0              pyhd8ed1ab_0    conda-forge
tomli                     1.2.2              pyhd8ed1ab_0    conda-forge
tornado                   6.1              py39hb82d6ee_1    conda-forge
tqdm                      4.61.2             pyhd8ed1ab_1    conda-forge
traitlets                 5.0.5                      py_0    conda-forge
typed-ast                 1.4.3            py39hb82d6ee_1    conda-forge
typing_extensions         3.10.0.2           pyha770c72_0    conda-forge
typish                    1.9.2                    pypi_0    pypi
tzdata                    2021a                he74cb21_1    conda-forge
ucrt                      10.0.20348.0         h57928b3_0    conda-forge
urllib3                   1.26.6             pyhd8ed1ab_0    conda-forge
vc                        14.2                 hb210afc_5    conda-forge
voltage-to-wiring-sim     0.1                       dev_0    <develop>
vs2015_runtime            14.29.30037          h902a5da_5    conda-forge
wcwidth                   0.2.5              pyh9f0ad1d_2    conda-forge
webencodings              0.5.1                      py_1    conda-forge
wheel                     0.36.2             pyhd3deb0d_0    conda-forge
win_inet_pton             1.1.0            py39hcbf5309_2    conda-forge
wincertstore              0.2             py39hcbf5309_1006    conda-forge
winpty                    0.4.3                         4    conda-forge
winshell                  0.6                      pypi_0    pypi
yaml                      0.2.5                he774522_0    conda-forge
zeromq                    4.3.4                h0e60522_0    conda-forge
zipp                      3.5.0              pyhd8ed1ab_0    conda-forge
zlib                      1.2.11            h8ffe710_1013    conda-forge